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Abstract. The purpose of this paper is to demonstrate the powerfulness
o e ow-lnvariance method for a more subtle characterization of the
nonlinear control systems. The oruecial premise is that the state flow-
invariant set is a rectangular and time-dependent box which specifically
allows a componentwlse characterization of the system evolution. The
main results concern the control and state componentwise constrained
evolution and the componentwlse stability. They are expressed by neces-
sary and sufficient inequality conditions.. As such the constrained evo-
lution and the componentwise stability may be designed in a natural way
as robust properties. For nonlinear matrix systems one introduces the
componentwise absolute stabllity by analogy with the clagsical one. Its
characterization by an adequate linearly majorant system and the subse-

quent componentwise evaluation of the solution by an exponentially de-
caying and positive vector may be significantly interesting in some

application fields such as engineering and economics
races, pharmacokinetics, transistor circuits etec.

» ecology, arms

Keywords. Nonlineax control systems ; componentwlse constrained evolu-
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INTRODUCTION

Consider the nonlinear contimous-time

dynamical system
2 = £(t,x,u), t€R, xeR?, ueR",(1)

where x 1s the state, u is the control and

f 18 a vecborial function.

In compliance with the usually specified

attributes of a dynamiocal system we assume

that u e T°, where T° 1s the set of the
plecewise contimious functions in
raY

T = [t,, t;) SR,
that 1s, continuous except a number of
points in T, all being left discontimulty
polnts only. It is known that for such
controls one has to approach the state
controllablility and especially the optimal
control problem for the system (1). As far
as 1t concerns these problems, according
to some practical reasons, one ascertains
that u has to belong only to a certain set
of admissible controls

Uz {ueT ; u(t)ev, (3)

where U is a compact subset of R™. Simi-
larly, by reviewing the aspects regarding
the state, 1t also results that x(f) has
to remain for all t €T In a certain com-

pact subset X C R™ only.

Undex these ciroumstances the statement of
the characterization problem concerning
the evolution of system (1) on TxUxX is
congistent and of practical interest of
course.

In this paper we will show that such a

(2)

teTy,

componentwise asymptotic stability ;
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componentwise

characterization may be accomplished by
uging the flow-invariance method for a
speci form of X, which seems to be ade-
quate for many applications., The origin °
of the flow-invariance method goes back
to the results of Nagumo (1942), Hukuhara
(1954), Brezis (1970), Crandall (1972)
and ‘Martin jr. (1973). An essential expo-
gition in a coherent way of the main re-
cent regearch in this field is due to
Pavel (1984). The significant results of

this paper lean upon the Lemma 4.2 (Pavel
1984), due to Pavel and Volou (%936), g

which assumes that X is a rectangular and
time~-dependent box in RT,

CONTROL AND STATE CONSTRAINED
EVOLUTION

Nonlinear Control Systems

We begin with some notations and definiti-
ons. Let v 2 (v;) aid w 4 (wi) be two. vec-

tors in Rk. In all that follows we denote
by |vl the vector with the components vyl
and by vew (v<w) or by vaw ?v>w)

the inequalities AN (vi-: wi) or vy >

z Wy (vi> wi) regpectively.

Let Vc R® be a compact subset and g: V=

—R"™ be a contimious function with the
components ¥, and let z (zl,...,zn) be

a certain point in V. We denote by gf, the
operator which "catches" ¢@(v) at zeV in
a diagonal manner, i.e. 63{?’@)} ]
[501(21372,lll,vn),llo|‘1pi(v1|ooc,zj_'l-o,



Vo)oeeos@lvypens V19 zn)] ' where [.]'
signifies the transposition. We also de-
note by a¥t1§${¢(v§}, where ext may be

min or max, the vector with the components
9%15 Vi(vl.-no,zi,noo,vn)o

Let & : T>R® and m : T-R® be two diffe-
rentlable functions such that a(t) € a(t),

teT, and let b :+ T~R™ and 5 : T—~R® be
two continuous functions such that b(t) <
£B(t), t€T, It is known that usually
both x and u are subjeot to certain pre-
soribed constraints due to physical and/
or constructive reasons. We define the
state and the control constraints associ-
ated to the dynamicel system (1) in the
form of the followlng two rectangular and
time~dependent boxes :

X(t) 2 {veR®; a(t)gvea(t)}, ter,(4)
U(t) = fweR™ ; p(t) <wgB(H)}, t€D.(5)

Definition 1. The dynamical system (1) is
a e - constrained evolutionally
if for each x(% ) % x € I(to) and for each

ue?s the response of (1) satisfies
x(t)€ X(&) for each teT. (6)

Remark 1, According to Ursescu (1982) the
: - constrained evolution of (1) for
arbitrary compact sets X(%) and U(%), in
the condition of unieity of the Cauchy so-
lution (i.e. f is continuous in t, x and
u and locally Lipschitzlsn in x), is equi-~
valent to the flow-invariance of X(t) for
each ue? ~on T, respectively to

1im inf h™la(v+he(t,v,u(t));X(t+h))=0 (7)

hwo

for each (t,u,v)e TxUxX, d(v;V) signifies
the distance from veR™ to the set VcRZ,

Remark 2. For the state and control con-
straints the rectangular boxes (4) and (5)
may be substituted by the curved boxzes

Z(t) & {veRr® ; a(t) <p(v)<a(t)} and
uCt) = iw eRr® b(%) ¢ a(w) < B($)} respeo-

tively, where p : R“-»R™ and q : R®—R%
must be invexrtlible and derivable and res-
pectively invertible and continuous., Undex
such hypotheses the TUX - constrained
evolution, by usi the transformations
£ = p(x) and % = gq(u), is equivalent %o

the TUX - constrained evolution, where
X(t) and U(t) are both rectangular boxes.

Remark 3, The time-dependent boxes (4) and
generalize the well known component=
wise constraint |u(t)| <u, = constant,

which is the standard start point for the
Pontriaghin's prineiple. The special form
of X(t) allows, as we show below, an ex-
plioit analytical conversion of the tan-—
gential condition (7), which is very pow-
erful of course, but intricate enough in
handling for X(i) of arbitrary form, In
contrast, by this conversion the specific
form of U(ty, for instance the form (5),
does not play any role. Consequently the
following result concerning the TUX - con~
strained evolution refers to a certain un-
specified compact U(%t), except the situa-
tions when (5? is deliberately considered.
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Theorem 1. The dynamical system (1), with
T contimicus and locally Id.psohi.tﬂa’:,, is
Tn%;x - constrained evolutionally if and
only if

XS &8 e, v,u(6)} = &(4)] » 0,(8)

a(t) 0
max |4 £f(t,v,u(t))r - '(t)| € 0.(9)
Tx Y xX [ i { (e } ]
Proof. On the basis of Remark 1 and of
Temma 4.2 (Pavel, 1984) ollows that
e - constrained evolution of system
(1), _in view of differentiability of a(%)

© and &(t), is equivalent %o

a(t) + hA(t) + ha(h) <
£v + hf(t,v,u(t)) + hofh)
€ '(t) + hE(t) + hx(h),

for each (t,u,v) €TxUxX, for h> 0 small
enough and for certain funotions o : T--IP,
o: T+R" and & : T-~R", with x(h)—~0,
o(h) =0 and #(h)—>0 as hw 0.

Substltuting v successively by (gl(t),vz,

(10)

...,vn),...,(vl....,gi(t),...,vn),...,(vl,
seeyVy 158, (%)), where gi(t) are the com-
ponents of a(t), and by (El(t)|72'--l'9vn)r
...,(vl,...,Ei(t),...,vn),...,(vl,...,

vn_l,'!n(t)) respectively, whexe 'E.i(t) are

the components of &(t), and simplifying
by h>0 it follows that (10), under hwO0,
is equlvalent to -

£ f20t,v,u(6)} > &),

X e(e,v,u(t))} < &(E)  (10b)

both for each (t,u,v)€ Tx%UxX. The neces-
g1ty part of this equivalence is obvious.
To prove the sufficiency part of this
equivalence assume by contradiction that
(10a) is not true, that is fi(t’vl""’

vi_l,gi(t),vi+l,...,vn.u(t)) <§i(t),rwhe:e
f, is a certain component of £, Then it is

(10a)

easy to prove that for h>0, small enough,

we obtain

n~La( [vyeeevy_q 8 () Vip1eeeVn]' + B[f;..
.&...;n]' 3 X(t+h) = lii - g,i(t)l £ O for
Vjécgj(t).gj(t))y Jlstt'sns j*ii

-
with ':k = fk(t,vl,...,Ti_l,gi(t).vi+l,...,
vyou(t)), k=1,...,n, which contradicts (7).
Similarly, one can prove that if (10b) is
not txue, then (7) is also not true.
Now it i1s a simple matter to see that
ElOa) and (10b) are equivalent to (8) and
9) respectively. i '

" Remark 4. The conditions (8) and (9) re-

present nonconventionally differential in-
equalities and they may be used in control
design, 1.8, for the determination of £
fox prespecified T, U(t) and X(%t). If this
problem can be solved, then, taking into
acocount the inequality form of the condi-
tions (8) and (9), we may suppose that
there exists a class of solutions f. Con-
sequently the designer may adopt a sulta-
ble solution £, in accoxdance also with



other supplementary conditions, but such
that for its imperfect practical realiza-
tion and/or in the presence of some uncer-
tainties (both holding between certain 1i-
mits) the conditions (8) and (9) still re-
main valid. As such the T%X - constrained
evolution of the dynamical system (1) may
be designed from the start point and in a
natural way as a robust property. Thus a
relevant application field seems to be the
design of the spatial manipulating systems
(Volcu, 1985).

Linear Constant Control Systems

In this case the conditions (8) and (9)
become transparent enough and relatively
easy in handling so that they may be more
significant for applications.

Let us consider the linear constant dyna-

mical system
% = Ax + Bu, t€R_, x€R?, ueR", (11)

where A and B are real constant matrices
of adequate dimensions.

Clearly we may assume for U(t) (see (5))
that

-b(t) =B(t) 2b >0, teR, (12)

and T = R, . According to (12) the system

(11) possesses a symmetry point correspon-
ding to u = 0 and x = 0. Thus we may fur-
ther assume for X(t) (see (4)) that

A

-a(t) =&(t) =a > 0, teR. (13)
Remark 5. Under these hypotheses the state
an e control constraints are

<

~

<

=

Jx(t)] [u(t)]

and instead of the R+‘2£,X - constrained
evolution of (11) we can simply and speci~

fically talk about the componentwise con-

strained evolution (CCE) og (11). Actually
such a peculiar evolution may be also con-
gidered for the dynamical system (1).

a, b, te H+v

For the sake of gimplicity of writing we
introduce some auxiliary notations. Let
M & (mij) be a real (kxr¥) matrix. We deno-

te by |M| the matrix with the elements
[my 4 and by M, for kx=r, the matrix with

the elements my;, and Imijl, 1#£3s

Theorem 2., The dynamical system (11) is
and only if

Aa + |Blb £ 0,

—-—

(14)
Proof, The extrema involved in (8) and (9),
with (4), (13) and (5), (12), can be cal-

culated as follows

G giAv + Bu(t)} =

ﬁ?{Av + Bu(t)y -

= IB. + iBibn

-min
R+x?LxX
=max
R+x2l,xx

Clearly, condition (14) depends on the
partioular choice of the vector bases for
X and u. For instance, if A, B are in the
controllability canonical form, condition
(14) cannot be satisfied. A natural ques-
tion is that of the existence of wvector
bases in R® and RM respectively for which
system (11) is CCE, In order to clarify
this, let us consider the transformation
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~

X = VElx, where Vp 1s the modal matrix of
A over R. Such being the ocase VglAvR is

the (block) diagonal or the(block) Jordan
canonical form of A over R. Obviously the
inequality
= p—
Vg AVy
which corresponds to (14) but for the new
state vector x, can be met if the real

parts of the eigenvalues of A are negative
and sufficiently small.

<

a+ [vilElp < o,

COMPONENTWISE ASYMPTOTIC
STABILITY

The notion of TUUX - constrained evolution
may produce, under certain supplementary
assumptions regarding X(t) and U(t), some
special type of stability results. Fox
example the CCE (see Remark 5) can he con-
sidered as a necessary and sufficient con-
dition for componentwise bounded input ~
bounded state ?CBIBS) stability. Similax
results may be obtained for the internal
stability (u(t) = 0, t€ R.). In the case

of linear constant dynamical systems such
a subject was covered, via flow-invariance
method, in other papers (Voicu, 1984a, b).
Next we shall firstly investigate the non-
linear case by the same method.

Componentwise As¥mgtotic Stabilit*
et us consider tha e dynamical system

(1) is free (u(t) = 0, te R+), that is

% = £(t,x), t€R, x€RY, (15)
with

£(£,0) = 0, te€R_.
Since x = 0 is an equilibrium point of

(15) we may consider the rectangular time-
dependent box

A n ,
X,(t) £{ver® ; |vi SPD}, teR,,
where }*: R+-ar is differentiable, with

F(t) > o, L€R, .

As far as it concerns the stability of x
0 we have furthermore to require that

N

lim (%) = O. (16)
t-m
Definition 2. The point x = 0 1s called

componentwise asymptotically stable with
respect to §* (t) (CWASY') Lif for each t 2

2?0 and for each X,y With .'xolsf(to), the
regponse of (15) satisfies '

[=x(t)l < ¥(¢), an
The corresponding characterization of sys-

tem (15) can be easily derived from Theo-
rem 1.

Theorem 3. The point x
aneooe 2 e poin
¥ . '
max |6 ldte(t,v)Y - F(t) (18)
t»O.msa‘[ 4l w} - Fw)

Note that the signs preceding J" and £ in
(18) must be in concordance.

t)to.

0 is CWAS)}" if

£

=

0.

Remark 6. It is obvious that condition
, under (16), can be gatisfied only if
the equilibrium point x = 0 is asymptoti-



cally stable in ILliapunov sense. Consequen-
tly inequality (18) represents a suffici-
ent condition for the asymptotic stability
of the point x = O, Moreover, the set

X s L veER" 3vi g mg.::f(t)}, is one of
1ts asymptotie stability reglon.

In this context we can state the question
of the global CWASY® . Clearly one can iden~
t1fy many premises for its consistent de-
finition. It seems to us that the follow-
ing is natural and simple.

Definition % Assume that J'(%) in %—
on s replaced with Py(t), £2>1. The
polnt x = O 1s called Zlobally CWAS)Y" (ox

gimply the system (15) is CWASY*) if x= 0
is CWAS)* for all P>1.

The corresponding characterization of sys-
tem (15) may be derived with Theorem 3
(mutatis mutandis).

Theorem 4. The dynamical system (15) is
and only 1if

1 +r+ L
max bttt o - t < 0.
m e x [SE5{xe(t,pn} - o) (19)
i<y, f; 1
Remark 'E. Following Remark 6 we may assert
a ) is a sufficlent ocondition for
the asymptotic stability in the large of
X = O,

Agsuming that the dynamical system (15) is
linear and constant, i.e.

% =Ax, t€R, x€RY, (20)

the specialized form of Theorem 4 is the
following.

Theorem 5. The dynamical system (20) is
and only 1if
nax [Z7) - 0] £ o. (21)

+
Proof. Observe that the maximum from (19)
For (vl £ (t) is to be determined by the
proof of Theorem 2.

Componentwise Exponential As totle
%EaEEII’G'x

we have already proved (Volou, 1984a;
Proposition 2) CWAS)* of system EEO) is
equEvEIen:E To CWEAS (E = exponential) of
the same system, The corresponding defini-

tions of the second stablility type, regar-
ding (15), are the following.

Definition 4. The point x = 0 is called
er¥e exist o >0 (vector with

the components oﬁi) and /3> 0 (scalar) such

that for each tce R, and for each X, with

|z | £« o the response of (15) satisfies
0
Ix(¢)l < oce'f’("ftO). t2t . (22)

Definition 5. Assume that o in Definition
s replaced with £%, £ > 1, The equi-
ibrium point x = 0 is called globally

CWEAS (or simply the system (15) is CWEAS)
if x = 0 15 CWEAS for all jo; 7

Obviously the characterizations via Theo-
rems 3 and 4 may be derived by speciali-
zing t, = 0, §'(t) = «e”** and by re-
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placing v with ve™/t,

Theorem 6. The point x = 0 is CWEAS 1f and
only

t o Ea =/t .
sg;ox [eP*¢ vitE(t,ve s } < spucs (23)
vl

Theorem 7. The dynamical system (15) is

and only if

1_pt e 20, -t
:;Ox [Feﬁ 4 v{_f(t,fva r )}]\4-/30(. (24)
lVl-{ﬂ{v_f‘31

For the further development let us recall
the characterization of (20) regarding
CWEAS., Firstly some notations and defini-
tions : A a (a-ij) H -A.d_ & diﬂg(l/ql,ooo,

1/oy) A dlag(®y,eee,)) 5 Gy(Ay) 2 {85€C
1 -
ls - aii|$§i 32‘21‘:‘1‘&1:1'“:1}' i=1,40e,n,
i

which are the o~ Gershgorin's disks asso-
clated to A (Bellman, 1960 ; p. 107)
1]:’ k=l,...,n, are the leading principal

minors of £ ; M>0 simbolizes an element-
wise inequality (i.e. mid> 0).

Theorem 8. For the dynamical system (20)
e Tollowing statements are equivalent :
19 (20) is CWEAS ; 29 T < -3 ; 3% 6<

1

4° Tt <0 ; 5° -X i an M-matrix (Bellman,
1960 ; p.295) ; 6° X is Hurwitzian ; 7°

n
e, (e cfsec s Be s <0} ; 8°(—thk>
> 0, k=l,400,n 3 90 det A £ 0, (-K)"" 20,

To prove the equivalenoce between 1° and 2°

one applies Theorem E. For the other equi-
valences see for Instance Voiocu (1984a,b).

As 1t has already been underlined in these
two papers, CWEAS of (20) is a special
type of asymptotic stability, depending on
the vector basis in R®, This represents a
row_property of A, which holds if and only
if A satisfies one of the statements 2° -
- 99 from Theorem 8. CWEAS of (20) corres-
ponds to a certain dominance of the fixst
diagonal elements of A in the row direoti-~
on, necessarily implyling that these ele-
merts are negative (see 3° from Theorem 8),.

Componentwise Absolute Stabilit
The inequality form of condition (24) and

Theorem 8 suggests a pecullar approsch of
a olass of nonlinear dynamical systems
(15) in the situation when they may be ex-
pressed by the equation

% = F(t,x)x, %€R, x€R™ (25)
F(t,x) belongs to a class of (nxn) matri-
ces which are continuous and adequately
bounded. For our purpose this boundness

must be understood in the following sense:

for a given real constant (nxn) matrix A
there exist oo > 0, 2 > 0 such that the
followling elemeniwise inequality holds

—@i:({F(t,fva‘/’t)} < E,t20, lv]sc(.le,(as)

where ‘giﬁ is to apply to eaoh columnof F,

Remark 8. Clearly there exists a nonempty
class # 7 of continuous matrices F(t,xg



which may satisfy (26). Under these cir-
cumstances the linear constant dynamiocal
system (20) may be oalled the linear ele-
mentwise - mejorant of a e dynami-

cal systems ( w FGTI.
‘Definition 6. The dynamiocal system (25)

8 0 ed componentwise absolutely stable
if it is CWEAS for all FGJTI.

The corregponding characterization of (25)
is the following.

Theorem 2. The dynamical system (25) is
componentwise absolutely stable if and
only if its linear elementwise £- majo-
rant (20) is CWEAS,

Proof., Sufficiency. First note that for
20, V<o » £> 1 and FE.?’K we have

‘@i:{:';}‘(t,fve“/’t)v} £ 'gi:{F(t,fva'ﬂt)m}—.:
‘gis{ﬁ(t,fva'f’t)}o( < T . (27)

If (20) is CWEAS, according to (27) and
to 20 from Theorem 8, one may write

+ i -
G, pve v} € T g - pox
for £330, [Vigx, p21 andFGfI. In view

of Theorem 'E (applied to system (25)) and
Def on & 1t follows that system (25)

8 componentiwise absolutely stable,
Necessity is obvious by adopting F(t,x)=A.

Remark 9. For a class of nonlinear matrix
systems of the form (25) in engineering
and economics, ecology, arms races, phar-
macokinetics, transistor circuits etec a
study of "the asymptotic connective sta-
bility" vie the Liapunov direct method is
due to Siljak (1975a, b). By defining the
oclass i of continuous matrices for which

F(t,x) € ¥ for t€R,, % €R®, where M is

a given real constant (nxn) matrix, one
characterizes (25) in texrms of "the abso-
lute exponential and connectlive stability
(AECS)" and glves the time-domain evalua-
tion

IE(H)) € ke~ HE-to) t2t,, (28)

where ||+|| 1s the Euclidean norm, k >0 and
£ > 0, In this case system (255 is AECS
if and only if M is Hurwitzian (for othex
equivalent conditions, mutatis mutandis,
see Theorem 8).

It must be pointed out here that if (25)
is CWEAS then it 1s also exponentially and
connectively stable because the more deta-
iled time-domain evaluation (22) implies
(28), 1.e. the first is stronger then the
seocond. In gpite of this for a given &

the class ‘?—I seems to be larger than J‘lx.

To justify this last assertion let us exa-
mine an adequate example.

Example., Consider the dynamical system
(25) with n=1 and & = -1, If we adopt

F(t,x) = —-eztlxl, then there exist o= 1
and A= 1 such that Fé& f_; because

-fezte < -1, t €R,_, 21, Consequently
1x(t)l € e-(t'to), t2>t,>0, for each
ol & £y P 21, 1i.e. the system 1s CWEAS

or equivalently (owing to n=l) exponenti-
ally and connectively stable. It 1s a sim-
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ple matter to verify this by using
2% 0 2%
x(t)=2x°/(2+fx°[(e -e“"0)), tzto,xoe R,
which 1s the Cauchy solution of the system
2 = -ezt_lx[x.

At the same time F¢ r/’é_l because -ezt\xlé_
£0, te R,, X€R, 1.e. FGM&O ; obviously
‘/’GO cannot be a class for which the system
be AECS.

CBIBS Stabilit
We shall return to the linear constant dy=-

namical system (11). Clearly it depends on
A and B whether condition (14) can or can-
not be satisfied for prescribed a and b.
If we try to determine a and b for given
A and B we have to prove an existence re-
sult for the inequation (14). A partial
answer in this respect is the following.

Theorem 10. A necessary and sufficient
condition such that for each B and for
each b to exist an a such that the dynami-
cal system (11) be CCE (or equivalently
CBIBS stable) is that (11) be CWEAS,

Proof. Sufficiency. If (11) is CWEAS thex,

according to and 9° from Theorem 8, for
each B and for each b there exists

a =€, (-D7BIb + £, > o,

where £1>, 1 and &, > 0 are two arbitrary

scalars, for which the inequation (14) is
satisfied.

Necegsity. If (14) holds for each B and
or each b then Aa < 0, which suffices
foxr CWEAS of (11).

Componentwise Stabilization
Consider the linear constant dynamical
system (11) and let

u =-Kx + v (29)

be a linear state feedback and control
law, where K is a real constant (mzn) ma-

trix and ve R".

By replacing (29) into (11) one obtains
% = Fx + Bv, t€R,, x€R", veR™, (30)
where P € A - BK.

In view of Theorem 10 the following pro-
blem may be of practlcal interest : "de-
termine K such that (30) be CWEAS for pre-
scribed ¢ and A", Following 3° and 7
from Theorem 8 we can say that this pro-
blem consists in the o - Gershgorin's
disks aessignment in the complex half pla-
ne Re 8 £ -3 <0, As such one cannot ap-
proach it as' a problem‘'of explicit pole
assignment, but one must solve the alge-
braeic nonlineax system

T < -p (31)
BK = A - F (32)
for given A, B and oc,/s.
Assume that B is of full rank and m< n.
This implies that there exists a real
constant and nonsingular (nxn) matrix P
such that

PB = [Bp, 0]’ ,



where B is a certain nonsingular (mxm)

matrix (Boulllon and Odell, 1971).
By multiplying left with P in (32) and
partitioning P as PB, i.e.

- ! 1 '
B [Pm’ Pnrm]
one obtains from (32) a solution
-1
K =B "P(A-F) (33)
if and only 1f the consistency condition
Pnym(A -F) =0 (34)

holds. Thus the algebralc nonlinear system
(31), (32) has a solution (33) if and only
if the system (31), (34) admits a solution
F for at least one P _ .

Remark 10. If we consider that K 1s given
and B 18 the unknown, then the nonlinear
problem (31), (32) can be easily reduced,
in a certain sense, to the linear case.
Such a problem 1s considered in en other pa~
per (Voiou, 1987) and specifiocally it cor-
responds to the componentwise state detec-
tion, 1.e. detection by observing the sta-
te with componentwise absolutely and expo-
nentially decaying errox.

CONCLUDING REMARKS

The main conclusion of this paper is that
one tries to demonstrate the powerfulness
of the flow-linvariance method for a more
subtle characterization of the nonlineaxr
control systems. The crucilal premise for
this demonstration is that the state flow-
invariant set is a_rectangular and time-
dependent box in R™ which specifically
allows an explicit analytical conversion
of the tangential condition (7) and by
this a componentwise characterization of
the system evolution. The obtalned results
concern the control and state component-
wlse constrained evolution and the compo-
nentwise stability. All these results are
necessary and sufficient conditions and
they are always expressed by lnequallties
which may be satisfied for a class of non-
linear ocontrol systems. As such the com-
ponentwise constrained evolution and the
componentwise stability may be designed
from the start polnt and in & natural way
as robust properties. Following this idea
and by analogy with the classical notion
of absolute stability one defines the com-
ponenentwise absolute stability for non-
linear matrix systems, Its surprising
simple characterization by an adequate 1li-
nearly majorant system and the subsequent
time-domain componentwise evaluation of
the Cauchy solution by an exponaentially
decayling and positive vector may be signi-
ficantly interesting in some application
flelds as engineering and economics, eco-
logy, arms races, transistor oirocuits etc.
The results of 8iljek (1975a, b) in this
respect do not cover our results because
the time-domain evaluation (22) of the
Cauchy solution is morxe detailed than (28)
and at the same time the olass of nonli-
near matrix systems Fg seems to be lar-

ger than that considered by Siljek.
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