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FREE RESPONSE CHARACTERIZATION VIA FLOW INVARIANCE

M. Voicu

Department of Electrical Engineering,

neh., Asachi" Polytechnical Institute, Iagl. Romania

Abstract. It is shown that the flow i{nvariance can be an efficient to0l
Tor & more detailed characterization of the dynemic processes. For the

linear constant
= (ai

dynamical systems described by % = Ax, t=0, with A =
a (nxn) real matrix, and for the time-dependent state interval

1(t) = {z¢ R%;|zIsY(4)}, t=0, as flow inverient set (l+| and < signi-

fyl componentwise absolute value
S

is differentiable, a componen

and inequality respectively), where
twise charscterization is developed.

A necessary and sufficient condition such that [x(t)I=7Y (t)_£for eac

$,=0, for each [x(toﬂssT (to) and for each t=t_1is that

h,
Y (t)<s (%)

for each $=0. A has the elements a,;; and la; |, 1#3. For Y (t)—=0 as

t-=co the componentwise asymptotic stability

g defined. Such being

the cese a necessary and sufficient condition for the existence of Y(%)

is that &

be Hurwitzlien. The results of the paper may be also used for

gsolving the compenentwise gtabilization problem.

Keywords : System theory ; lineaxr aystems ; time-domain analysis ; free
Yesponse componentwise characterization ; stabllity ; componentwise

asymptotic stabllity.

INTRODUCTION

Let us oonsider the linear constant dyna-
mical system

x € RP, (1)

where As(aij). Bij €R, with the initial
condition

1 = Ax' '620,

=0 (2)

x(ta) =i xo' o

It is known that the asymptotic stability
of the trivial solution in the sense of
Liapunov is conceived on the basis of the

norm in R®. This means that the temporal
evolution of the solution of the Cauchy
problem (1),(2), which has the form

x(t) = eA(t 'y to)zo, =t , (3)

is evaluated via the scalar function
Ix(£), t=>%,. A well-known result in this

respect is the following : The system 511
is asymptotically stable if and o :
there exist M>0, P =0 such that for each

t,=0, for each x, €R” and for each t=t,

Ix(8)] < uuzo“e-f’(t - ) w

holds.

In certain theoreticel problems as the
flow invariance of the solution (3) with

respect to & compact subset ICR® or in
certain applications, especially in gystem
project and engineering,a more detailed

characterization for the temporal evolu-
tion of system (1) is desirable. An exam-
ple of such charascterization may be that
certain components, or all, of (3), satis-
£y inequalities of the form (4).

The purpose of this paper is to develop &
componentwise characterization for the
free response (3) of the system (1) and
subsequently to state the componentwise
asymptotic stability problem. In this
respect we prove some simple and easily
applicable results, by using flow invari-
ance methods (Crandall, 1972; Martin,
1973; Nagumo, 1942; Pavel and Vrable,
1979; Pavel, 1982).

PFLOW INVARIANCE OF A TIME-
DEPENDENT INTERVAL

We begin with some basic notations and de-
finitions. Let v=(vi), w=(wi) be two vec-
tors in R” and let Cn(cid),Du(dij) be two

real (nxn) matrices. In all what follows
we denote by |v| the vector with the com-
ponents |vy|, by |C] the matrix with the

elements Icijl and by T the matrix with
the elements ¢y, and |o; |, i#j. We also
denote by v>w (v=w) and by C=D (Cc=D)
to signify 1.5_>\(1(v1;w1) and °ij> di:}
(cij;d”) for all i,j. Let T,_(t):>o,

£=0, i=l,4e,n, be n differentiable sca-
lar functions, which define on each unit

vector basis of R™ the vector function
Y(t)=>0, t=0, with the oomponents"fi(t),

and the time-dependent state interval
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I(t) = (veR%; Y (t)-|v|=0]}, t=0. (5)

For the free response (3) of (1), whioch
may belong to I(t) on a certain time in-
terval, the following definitions concer-
ning the flow invariance are available,

Definition 1. I(t) is flow invariant for
or each toa an or eao
xOEI(to) there exisgts t,>0 such that

the free response satisfies

x(t) € I(t) for each x, € I(to)

[toet tte]s
Definition 2. I(t)

is globally flow inva-
i f f !ZZ 1f for eac 02 e free

(6)
and for each t €

rian or

response (3) satisfies

x(t) € I(t) for each x, € I(to) s

and for each t;z-to.

As for each t=0, I(t) is compact and for
each t =0 the free response ?3) of (1)

is defined and continous on [t ,+w), one
may prove the following.

Proposition 11.. A necessary and sufficlent
con&‘

i¥ion such that I(%) be flow invarient
or (1) Is tha E) be globally flow
inveriant for (1).

Proof. is obvious.

Sufficienc Necessity.
Tet us consider T=(t ¢ (t+tp,+00 )3 X(E)GL( 1))

and t=inf T. Clearly, (7) holds if and
only if T=@ ({=+00). Suppose by contra-
diction that t<+o. If § €T, then x($)¢
¢I(t). But =x(t)e I(t) for each tet,, )

and therefore for t-—{, x(t)=x(t) € I(%),

what is impossible. If t¢ T, then x(t)e

€ I(%). But 4 cannot be an isolated point

of flow invariance, what implies that

t#inf T. This contradicts the definition

of t. Hen:2 {=+00 and T=@.

Remark 1. According to Propesition 1 the
al time toao and tThe length :Ef>0

of flow invariance of I(t) for (1) can be
arbitrary. Therefore, from the basic
result of Pavel and Vrabie (1979) we may
derive the following.

Theorem 1. A necessary and sufficient con~
dition such that I(t) be gIobaIIx flow

invariant for ) is

1im h™1d(z + bAz; I(t+h)) = O
h>o

for each t=0 and for each z €I(t).

We denoted in (8) d(v;I)=inf|lv-w| for wel,
Using Theorem 1 explicitely for (1) and
I(t), we can establish the following more

detailed result, which is useful for ana-
lytic and computational purposes.

Theorem 2, A necessary and sufficient con-
dition such that I1(%) be globally flow

' Proved by I. Vrabie.

1165

invarfent is that

Y(t) = XY (t) for each $=0. (9)

Froof. It is known that (8) is equivalent
to

|z+h(Az+a(h))| < Y (t+h) for each t=0,
for each z €I(t), (10)
for h>0, small enough,
and for certain a :1[C,+m )—-Rn, with a(h)>

=0 as h~0 (Pavel, 1982). As Y(t) is
differentiable, there exists

T : [0,4® )=R", with r(h)=~0 as h=0 such

that Y(t+h)- Y(%)=h Y(t)+hr(h), t=0.
In view of (10) the statement (B) is
equivalent to

|z+h(Az+a(h))|S Y(t)+h Y(t)+hr(h)

for each t=0, for each z € I(t) (11)
and h>0, small enough.,
Substituting z successively by :t(Yl,glz. esy

Ban) v e 2By s eesByy 107 08y5, 70 000800) 00
.,i(gnl...,gnn_l,\"n), where Y, =Y, (t) and

gij=‘r‘1(t)sgn 8449 i,3=1,..,n, JAL, we

ascertain that each row of (z+hAz)

reaches its maximum value (for +), respec-
tively its minimum value (for =) and
simultaneously each row of (11l) can be
simplified by h>0 for fixed t =0, for

z €I(t) and for fixed h>0, small enough.

Consequently (11) is equivalent to & T(t)<

< "F(t)+r(h);a(h) for each t>0., In view
of the fact that a(h)—=0 and r(h) =0 as
:‘\?,)it follows that (8) is equivalent
o (9).

For a further characterization of the
behaviour of (3) regarding this special
case of flow invariance, let us consider
the system

$ =Xy, t=0, yeR", (12)
with the initial condition

y(to) = yop ‘to;bO. (13)
The solution of (12),(13) is

y(t) = oh(t - to)yo, t=t . (14)

Notice that the elements of X, which do
not belong to the first diagonal are non-
nagative. Via a classical result (Bellman,
1960) it follows that (14) satisfies

eI(t = tO)yo}z 0, for each t, >0,

(15)

Theorem 3. A necessary and sufficient con=
on_such that I(T) Ee EZOE&ZZE ﬂow
Tovariant for (1) is tha

() = ehlt = ©) y(g)

for each yoao and for each t?to.

(16)

for each pair ©,t€[0,+00), t=0,
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Proof. Sufficiency. Substituting eI(t"&)
by its Taylor expansion around the point
t=6, (16) may be brought to the form

[Y($)=Y(8)] /(+-0) >EV(©)+E2(£-6)Y(8)/21+
+sssy, >0, Obviously for -1 one obtains
(9). Necessity. For each continously funec-

tion v : [0,+c0)—=R®, with v(t)=0 and such

that T(t)=KY(t)+v(t) for each t=0 (i.e.
(9) with "=" in place of ">"), one
deduces

t '
Y(t) = oA t=®)y(o) + je Aty g1y ats

for each pair €,t €[0,+m)

t=6. According
to (15), it follows that

l9) implies (16).

Remark 2, Taking tQ-O and substituting Yo

in (15) smecessively Wy (1,0,e050),405(0,0
¢y0,1) one concludes that

eXt = 0 for each t=0. (a7

Corollary 3.l. Each real (nxn) matrix A
ga 8 es

|eAt | < oAt for each t=0. (18)

Proof. Let T(t)=eItT(0), t=0, which
satisfies (16) for each Y(0)>0. In view
of (3) and (7), for t,=0, one may write
|x()] =[x | < ¥ Y (0) for eachY(0)>0,
for each |x |<Y(0) end for each ©=0.
Clearly, for x°=iY(O) one obtains (18),
because Y (0)=>0 is arbitrary.

COMPONENTWISE ASYMPTOTIC
STABILITY ;

To define the componentwise asymptotic
stability via the flow invariance it is
naturel to suppose that Yi(t). 1ml, .oyl

have also the property

liin(t) = 0| i“l,.o.n- (19)
t~m

Definition 3. The g¥atam 51) is called
componentwise asymptotica stable with
Tespect Lo TH;, un§er ;E?l. z% fo:r: eacl_x
anﬁ and for each ixols:_T 5 e free

response (3) satisfies

|x(t)| = Y(t) for each t=t_ . (20)

Remark %. The componentwise asymptotic
sta y with respect to Y(t) is equiva-

lent to the globally flow invariance of
I(t) (given by (5) with (19)) for (1).
According to

Theorems 2,3 one can formu-
late the following.

Theorem 4. A necessary and sufficient con-
on such a Ee componentwise

asymptotically stable with respect to Y(t)
1s EB) with (19).

Theorem 5. A necessary and suffioient con-
on _such that !%l Ee componentwisge
asymptotically stable W respect %o Y(t)

is IEEI wIEE-iI§S.
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Yy = age M, 0, da1, 0000,

Remark

« One may equivalently restate
as :

Y (8) = ey, (8) + Z, lag gl (%)

(21)

for each t=0, d4=l,..,n,

where Zd signifies the sum for J=1,2,..,

1-1,141,¢e,n, ‘According to (19), it
follows that for each i=l,..,n, there
exists ti;o, i=1,ss,n, such that

?i(tiko. i=l,es,ns In view ofTi(ti) >0,

"4i=1l,.e,n, from (21) it follows that

1=1,s0y0 (22)

834<0s

Thus, we proved the following.

gLable w

Theorem 6. A necessary condition such
: f%a% !l! be oomponen’fwlae as%’ﬁoroaluA

respec DY 8 .

From (16), under (19), one can easily
derive an existence condition for Y(t).

A necessary and sufficient con-
the existence of Y(%) such

Theorem 7.

dition for
; e componentwise & toticall
gtable W respec 0 Y 8

X be Hurwitzian.

Proof. Sufficiency. If X is Hurwitzian,

then one can take Y(t)=extT(0). for
which (16) and (19) are satisfied.

Necessity. If (1) is componentwise asymp-
Totically stable, then (16) and (19) hold.

Suppose by contradioction that X is not
Hurwitzian, i.,e. lim sup I|ext||>0. Taking
t-0

©=0 and using (17) and the inequality
Y(t)>0, from (16) it follows that

1im|Y(t)| = 1im sup ”extY(O)“ = O
t=00 t—-o00

which contradicts (19).

COMPONENTWISE EXPONENTIAL
ASYMPTOTIC STABILITY

By specializing the functions Yi(t). i.e.

(23)

where ac1>0. i=l,..,n, are the components
of the vector o =(&y,+s+,%,)>0 &and >>0

is a socalar, one may develop a more expli-
olite characterization for (3).

Definition 4. The system (1) is called
componentwise exponential as, oticall
B:Ea.EIe IT there exist o =0 and P =0
such that for eacn 50?30 and Tor each
ENES e P*o the free response (3)

satisfies

|x(t)|< ae™P® gor each t=t . (24)

Proposition 2. A necessary and sufficient
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condition such that (1) be componentwise
as otice. stable with respect to Y(t)
Ise exponent

8 e _componentw] xponential

as atanle,

Proof, Sufficiency is obvious. Necessity.
Xccording to the eorem of Perron - Fro-
benius (Bellman, 1960), there is for each

t+=0 an unique eigenvalue =Tt
(see (17)), with r>0 (& is Hurwitzian),
which has greatest absolute value. This
elgenvalue is simple and its associated
elgenvector may be taken v>0, Thus,one
can write eItv=-e"rtv,t33 0. Integrati

this relation on [0,+00) and then multi-

plylng by e'Pt, with 0< P<r, one obtains

easily that d(e PYv)/at > IEa"mv) for
each t=0, This means that (9) is satis-
fied for Y(t) given by (23) with a =v,
i.e. (24) holds.

otlo

In this context, according to Theorem 4,
one may prove.

Theorem 8., A necessary and sufficient con-
dition such EEE QZE ge comﬁonenfw}se
exponential asymptotically stable is that

ocpsmin(-aii -thlzj]aijlafj)- (25)

The proof follows immediately from (21)
by replacing Yi(t) glven by (23).

Corollary 8.,1. For each real (nxn) matrix

A with X Hurwitzien there exist >0, (>0
such that

leAt | < oft< qg{_'a'pt for each +>0,
o' is the row vector (a(il,.., 0(;1).
Proof. The left-hand inequality is already

Eroved (see (18)). If A is Hurwitzian,

hen, according to Theorem 7 and Proposi-
tion 2, system (12) Is componentwise expo-
nential asymptotically stable, In view of
Definition 4 and taking t°=0 one may write

]eItyolg_ ae M for each t>0. Replacing
now y successively by (arl,o, v 30) 5 eeati0ge
.,O,an) one deduces easily the right-hand
inequality.

Remark 5. For fixed aij' i,J=1l,ee,n, the
maximum value of [} depends on x>0,

i=l,.s,n. A3 a matter of fact one can
define the function

Puax( s eer) -=min( -aii-afglzj faijl ) «(26)

An equivalent statement for Theorem 8 is
the following.

Theorem 9. A necegsary and sufficient con-
di¥fon such that (1) be componentwise

exponential asymptotically stable i1s to
eﬁaf o =0 auc% that

RO (O (27)

>0 of ehtsg

Proof. Sufficiency. If (27) with & >0
olds, then there exists pm(wl,,.,n’n)>o
such that (25) is verified. Necessity is
obvious.

Remark 6. If we try to use Theorem 9 we
have %o prove an existence Tesu or the
inequation (27), or equivalently for

Yo = o (28)

where i-[I E-In]', I, is the unit (nxn)

matrix end [-]' signifies the transposi-
tion,

1% An existence condition for the problem
(27) may be easily derived from Theorem 7
and Proposition 2,

2% For the problem (27) we can also use
the notion of M-matrix (Ostrowski, 1955).
An M-matrix is defined to be a real (nxm)
matrix C such that LIRES 0, i#j, possessing

one of the following equivalent proper=-
ties : a) There existe v>0 such that Cv>
=03 b) C is nonsingular and all elements

of ¢~1 are nonnegative; ¢) All principal
minors of C are positive. The utility of
this definition lies in the following :

A necessary and sufficient condition for
The existence of & solution =0 for (27)
is that -X be an M-matrix. Note that the
properties and ¢

) allow to construct a
solution >0 for (27) (directly with b)
and via the Gaussian elimination process
with ¢)). In terms of property c) one can
estimate the maximum positive eigenvalue

1/Ppag(®qsees®,) of (=D)"1 =0 by using

methods derived from the theorem of
Perron - Frobeniua.

3% An existence result concerning problem
(28), which allows alsc to construct a
solution o¢, was proved by Dines (1918-

-1919) : A necessary and sufficient con-
dition for the e__EIs¥enoe of a solution «
for (28) is that the I-rank of X be
Teater n zero. For the defini¥ion of
%Ee I=ra of a (mxn) real matrix see
Dines (1918-1919) or Taschernikow (1971).

In terms of Remark 6 (2° and 3°2) and for
computational purposes one may prove.

Theorem 10, A necegsary and sufficient
condition such thet ;E %a cmgonenjw%ae
exponential asymptotics y stable is t

(-l)k Kk = 0, k=l...,n.‘

I].""In are the prinocipal minors of X.

Theorem 1ll. A necessary and sufficient
conditlion such f;ﬂij SIE %e comEonenEw%se
exponential asymptotically stable 1a t

the I-rank of A be greater than zero.

Remark 7. Let us consider
A_=diag(aTt ~1ynas )
a= ag(ﬂl '-o,an A ag(a:L,.t'an »

where ai;éo, i=1,..,n, are the components
of the vector a. Notice that Aa is simi-
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reapect the solution consists in the
agsignment of the o - Gershgorin's discs
in the half complex plane Re 8 < 0.
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lar to A, both having the same spectrum
0(A)., The a - Gershgorin's discs associ=
ated to A, i.e. the Gershgorin's discs
associated to A (Bellman, 1960) are sub-

sets of the complex plane C described by

Gyy(a) = {sec; Ia-e.iil < a;lzd |aij| aj} .
(30)

1’1, seylly

which have the remarkable property
o(4) C G,(a). G,(a) represents the union

set of GAi(a)’ 1=1,00y0s

Theorem 12, A necessary and sufficient
condition such §§a§ ;;; %e comgonaniw%
exponential asymptotically stable is

G,(a) C {s€C;Re 58 <0}

L 3
w
©

Bl
o

(31)
for at least one a=>0.

Proof. For e=o (& from Definition 4),
In keeping with (30), condifion (31) is
equivalent to (ai...,a%) > 0 (see

(26)), reaspectively to (25).

Remark 8. By analogy with the well-known
sta zation problem one can state the
componentwise stabilization problem of

the system R=Ax+Bu, where uc¢ R™ and B is
a (nxm) real constant matrix. According
to Theorem 12 the solution of this pro=-
blem consists in the assignment of the
- Gershgorin's discs in the half com-
plex plane Re 8 <0 via an adequate state
feedback. '

DEPENDENCE ON VECTOR BASIS

The componentwise asymptotic stability
implies the asymptotic stability.
Consequently each of the Theorems
- 12 is (mtatis mutandis) a crI%ergon
or asymptotic stability. In this respect
we remark that the oriteria which

correspond to Theorems 10 and 11 may be
useful in some applications.

The asymptotic stability does not imply
the componentwise asymptotic stability,
because the latter depends on the particu-
lar choice of the vector basis for (1) in

R™, In other words, there exist vector

basis in R® for which the flow invariance
of (3) cannot be realised for any I(t),

under (19). A natural question is that

of the existence of some vector basis in

R® for which an asymptotically stable
gystem is also componentwise asymptoti-
cally stable with respect to ngtg.

A partial answer to this question is the
following.

Theorem 13, There exists at least one
nonsingular transformation X=Px for (1)
such that the system X=A%, t>0, be
componentwise asymptotically stable with
respect to Y(%) if

O(A) C {8€C;Re 8<0,|Im 8|<-Re 8}.(32)
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Proof. Consider an'l, where V is the

modal metrix of A over R. Since A=V 1A V
is the (block) diagonal or the (block)
Jordan canonical form of A over R, accor-
ding to (32), it follows that A is
Hurwitzian,.

EXAMPLE
Consider the system
=1 2
- x, t=0, x(0)=x,, (33)
-1 =3

and find a function Y(t) such that (33)
be componentwise asymptotically stable.

Solution. Since A is Hurwitzian one may

adopt 'TIt)sext'T(O), which setisfies
Theorem 4. One may easily see that

oDt ge=8t go=D_go=8t

Y(0),t =0,
e~8t  goPtice8t

1/ +de
T(t)BG o

&e =g
where a=2+\3, b=2-\3, ¢=3+\3, d=3-{3, f=
=2V3, g=/3. For Y,(0)=(a"1)p and Y ,(0)=
=p, with arbitrary f==0, we obtain

Y($) =pla-1 1]° a0k,
which proves that system (33) is also
componentwise exponential asymptotically
gtable.

t=0,

CONCLUSIONS

The notion of flow invariance proves to

be an efficient tool for a more subtle
characterization of temporal behaviour of
the linear constant dynamical systems. In
fact, when the flow invariant set is a
time-dependent state interval I(t), a
componentwise characterization of the free
regponse is possible. Such an evaluation
may be useful especially when the state
components are of different importance for
the normal evolution of the systems (for
instance in Electrical Engineeri (Voicu,
1984) or in Biology (Pavel, 1983)). The
simply necessary and sufficient condition
(9) ellows to determine Y(t) for which
I(t) is globally flow invariant for a
glven linear constant dynamical system or
to determine the matrix A such that a
given I(t) be globally flow invariant.

The componentwlise asymptotic stability of
(1), which is a globally flow invariance
of I(t) for (1), with I(t)—=0 as t=ow,
represents a row property of the evolu-
tion matrix A consisting in a certain
firest-diegonal dominance (see (21)), and
holda if and only if X is Hurwitzian.
This special type of asympiotic stability
depends on the vector basis and it implies
the asymptotic stability in the sense of
Liapunov.

The results of the paper may be also used
for the linear state feedback synthesis
(Voicu, 1981; Voicu, 1983) in the compo-
nentwise stabilization problem. In this



